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Donnel’s equations are used to predict nonlinear vibrations of cylindrical shells, which

are excited by parametric dynamical load. A multi-degree-of-freedom dynamical

system of cylindrical shells is derived. The nonlinear modes of the parametrically

excited system are treated. The analyses have been carried out both with and without

the standing waves in the shell. Traveling waves are also analyzed in detail. We come to

the conclusion that the behavior of the nonlinear modes and the traveling waves are

similar.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled structures are widely used in aerospace, nuclear, civil and mechanical engineering. Longitudinal periodic
loads usually act on the shells and leads to complex dynamical behavior of the systems. Many efforts were made to study
this behavior. Yao [1] reduced parametric oscillations of cylindrical shells to the well-known Mathieu equation and studied
the stability boundaries. Bolotin [2] developed a general approach to analyze parametric oscillations of shells.
Vijyaraghavan and Evan-Iwanowski [3] studied theoretically and experimentally the dynamic instability of clamped-
free seismically excited cylindrical shells. Parametric oscillations of simply supported cylindrical shells were modeled by
two interacting modes (asymmetric and axisymmetric ones) in [4]. Hsu [5] considered oscillations of a seismically excited
clamped-free cylindrical shell. Koval [6] took into account longitudinal, bending and torsional oscillations to study shell
parametric vibrations in the regions of the main parametric and combination resonances. Donnell’s shallow shell equations
were used to study parametric oscillations of cylindrical shells [7] and the fundamental role of axisymmetric modes in
evaluating the parametric instability bounds is treated. The effect of initial imperfections on the parametric oscillations of
simply supported cylindrical shells was studied by Koval’chuk and Krasnopol’skaya [8]. Linear oscillations of clamped-free
cylindrical shells under the action of the horizontal seismic excitation were analyzed in [9]. Bondarenko and Telalov [10]
studied experimentally the dynamic instability domains and nonlinear vibrations. They obtained the hard frequency
response in the region of the main parametric resonance for circumferential wavenumber n=2 and softening for n42.
Kubenko et al. [11] obtained theoretically and experimentally the frequency response and the region of the main
parametric resonance of simply supported cylindrical shells. Parametric vibrations of a rotating cylindrical shell were
investigated by Ng et al. [12]; the effect of Coriolis forces on the parametric instability domain was analyzed. Ng et al. [13]
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studied parametric oscillations of the functionally graded simply supported cylindrical shells. Pellicano et al. [14] and
Pellicano and Amabili [15] analyzed nonlinear oscillations and dynamic instability of simply supported cylindrical shells
under the action of longitudinal dynamic forces. The dynamics of circular cylindrical shells carrying a rigid disk on the top
and clamped at the base was investigated by Pellicano and Avramov [16]. Experimental data on the parametric instability
of cylindrical shells are reported in [17], where a saturation phenomenon is treated. In this case the energy transfer from
low to high frequencies modes is observed. The dynamic stability of cylindrical shells under the action of both static and
periodic axial loads is treated [18]. The correlation of parametric instability with the shell collapse was investigated by
using Sanders–Koiter nonlinear shell theory in [19]. Kamat et al. [20] used a finite element approach to study the dynamic
stability of shells with complex shapes. This work treats linear model and Bolotin method is applied to determine the
stability boundaries. A low dimension model for studying of nonlinear dynamics and stability of compressed shells was
proposed in [21]. In [22], interesting studies on shell stability are presented. Shell was modeled using the nonlinear
Donnell’s shallow shell theory and a reduced order system was obtained from the PDE using a proper displacement
expansion and Galerkin methods. Sanders–Koiter theory is used to develop a nonlinear analytical model for moderately
vibrations of shell. Analysis of nonlinear modes of cylindrical shells, which are described by three mode model, is
considered in the paper [23]. The cylindrical shell with a rigid disk on a top under the action of harmonic base excitation is
considered in the paper [24]. It is shown that the increase of the excitation amplitude results in chaotic motions of the top
mass. In a paper by Goncalves et al [25] basins of attraction are used to measure the reliability and safety of the cylindrical
shell structure. Detailed reviews of cylindrical shell dynamics are presented in [26].

Nonlinear dynamics of cylindrical shells in the case of the main parametric resonance is treated in the present paper.
Cylindrical shells have dense frequency spectrum. Therefore, the case, when the three eigenfrequencies of conjugate modes
are close, is considered. This case occurs frequently in shell dynamics. These three conjugate modes are taken into account
in the analysis of the main parametric resonance. Two kinds of motions (nonlinear modes and traveling waves) are treated
in this paper. It is shown that the nonlinear modes correspond to standing waves in cylindrical shells. We come to the
conclusion that the behavior of the nonlinear modes and traveling waves are qualitatively similar.

2. Problem formulation and main equations

The simply supported cylindrical shell without initial geometric imperfections is considered. The following periodic
distributed parametric load acts on the shell (Fig. 1):

NxðtÞ ¼N0þN1 cos 2nt;

N0;N1 ¼ const40; (1)

where n is an excitation frequency. The amplitude of vibration is assumed to be moderate. Then the strains are small and
displacements are moderate and the strains–displacement relations are nonlinear. The strains and stresses satisfy the
Hooke’s law. The following Donnel equations describe the shell vibrations adequately [4,15]:
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where w is displacement of the middle surface points in the radial directions; x is a longitudinal coordinate; y is
circumferential coordinate; R is mean shell radius; r is material density; E, m are Young’s modulus and Poisson’s ratio; F is
an Airy stress function; D¼ Eh3=12ð1�m2Þ is the flexural rigidity.
Fig. 1. Cylindrical shell.
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The conjugation vibrations modes cosðsyÞsinðrxÞ and sinðsyÞsinðrxÞ have the same frequencies of cylindrical shells
vibrations. If a shell performs nonlinear vibrations, these modes can be excited jointly. It is well-known [27] that, wide
class of cylindrical shells has three close eigenfrequencies of conjugate modes. The main parametric resonance is
considered n�oi; i¼ 1;2; . . . ;6, where o2i�1 ¼o2i; i¼ 1;3 are equal eigenfrequencies of conjugate modes. Three
conjugate modes are taken into account in the expansion of the displacements in the radial directions. Then the flexural
displacement w can be presented as

w¼
X3

i ¼ 1

ðf2i�1 cos siyþ f2i sin siyÞsin rxþ f7 sin2 rxþ f8; (3)

where si ¼ ni=R; r¼mp=L; i¼ 1;2;3; ni is numbers of waves in circumference directions; m is a number of half-waves in x

direction. The summand f7 sin2 rx describes asymmetry of displacements with respect to a middle surface. The term f8

describes displacements in radial directions of shell face sections points. This term does not depend on circumferential
coordinate y. Therefore, the face sections can ‘‘breathe’’ [11].

The Airy stress function F is determined from the second equation of system (2). This function can be presented in the
following form: F ¼ FhþFp. Satisfying the periodicity conditions of the circumference displacements, the general solution of
the second equation of system (2) Fh is determined as [11]

Fh ¼
E
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The particular solution of the second equation of system (2) Fp can be presented as

Fp ¼ Fð0Þ1 cos 2rxþ
X3

i ¼ 1

Fð0Þiþ2 cos 2siyþ
X3

i ¼ 1

Fð0Þiþ5 sin 2siyþF�1 sin rxþF�2 sin 3rxþF�3þF�4 cos 2rx; (5a)

F�k ¼
X3

i ¼ 1

ðFðkÞi cos siyþFðkÞiþ3 sin siyÞ; (5b)

F�l ¼ FðlÞ1 cosðs1þs2ÞyþFðlÞ2 cosðs1�s2ÞyþFðlÞ3 cosðs1þs3ÞyþFðlÞ4 cosðs1�s3ÞyþFðlÞ5 cosðs2þs3ÞyþFðlÞ6 cosðs2�s3Þy

þFðlÞ7 sinðs1þs2ÞyþFðlÞ8 sinðs1�s2ÞyþFðlÞ9 sinðs1þs3ÞyþFðlÞ10 sinðs1�s3ÞyþFðlÞ11 sinðs2þs3ÞyþFðlÞ12 sinðs2�s3Þy;

k¼ 1;2; l¼ 3;4: (5c)

Eqs. (5a)–(5c) are substituted into the second equation of system (2) and the amplitudes of the same harmonics are
equated. As a result, the system of linear algebraic equations with respect to Fi is derived. The solution of this system Fi is
not presented for brevity.

Solutions (4) and (5) are substituted into the first equation of system (2) and the Galerkin method is applied to the
resulting equation. The system of nonlinear ordinary differential equations of the cylindrical shell vibrations is thus
derived. This system is rewritten with respect to the dimensionless variables

t� ¼o0t; f �i ðtÞ ¼ h�1fiðtÞ;

where o0 is the lowest eigenfrequency of shell vibrations, which is calculated according to the following formula:
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Dropping out asterisks in the notations, the finite-degree-of-freedom shell model with respect to the dimensionless
variables and parameters has the following form:

€f iþo2
i fiþ fiRiðf1; . . . ; f7ÞþGiðf1; . . . ; f6ÞþwiNxfi ¼ 0; i¼ 1;2; . . . ;6; (6)
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Riðf1; . . . ; f7Þ ¼
X6

j ¼ 1

gijf
2
j þlif7þzif

2
7 ; i¼ 1;2; . . . ;6;

G1;2ðf1; . . . ; f6Þ ¼ Z17ðf5;6ðf
2
3;4�f 2

4;3Þþ2f3;4f4;3f6;5Þ;

G3;4ðf1; . . . ; f6Þ ¼ Z37ðf1;2f3;4f5;6þ f1;2f4;3f6;5þ f2;1f4;3f5;6�f2;1f3;4f6;5Þ;

G5;6ðf1; :::; f6Þ ¼ Z57

�
f1;2ðf

2
3;4�f 2

4;3Þþ2f3;4f4;3f2;1

�
:

The values gij; Bi; Zij depend on the shell parameters and they are not presented here for brevity. The first and the second
subscripts, which are detached by a comma, were taken in the last equations. The frequencies o7, o8 are significantly
greater then o1; . . . ;o6. Therefore, it is assumed €f 7 ¼ 0, €f 8 ¼ 0. Then the following equations are derived from (7) and (8):

f7 ¼ ð ~o8

X6

j ¼ 1

g8jf
2
j �o8

X6

j ¼ 1

g7jf
2
j ÞZ
�1;

f8 ¼ ðo7

X6

j ¼ 1

g7jf
2
j � ~o7

X6

j ¼ 1

g8jf
2
j ÞZ
�1;

Z¼ ~o7 ~o8�o7o8: (9)

Eqs. (9) are substituted into (6). As a result, the functions Ri, i¼ 1;2; . . . ;6 of system (6) are derived in the following form:

Riðf1; . . . ; f6Þ ¼
X6

j ¼ 1

Zijf
2
j ; i¼ 1;2; . . . ;6: (10)

Thus, the parametric vibrations of the shells are described by Eq. (6) with the functions Ri in the form (10). In future
analysis, the parametric load is taken as NxðtÞ ¼N1 cos 2nt.

3. Nonlinear modes and harmonic balance analysis

The nonlinear dynamics of the system described by Eq. (6) is analyzed in this section. The equations

f2i�1 ¼ 7 f2i; i¼ 1;2;3; (11)

are exact solutions of system (6). If solutions (11) are substituted into (6), the following dynamical system is derived:

€f iþo2
i fiþ fi

~Riðf1; f3; f5Þþ
~Giðf1; f3; f5ÞþwiNxfi ¼ 0; i¼ 1;3;5; (12)

where

~Riðf1; f3; f5Þ ¼
X

j ¼ 1;3;5

2Zijf
2
j ; i¼ 1;3;5;

~G1ðf1; f3; f5Þ ¼ 2Z17f 2
3 f5;

~G3ðf1; f3; f5Þ ¼ 2Z37f1f3f5;

~G5ðf1; f3; f5Þ ¼ 2Z57f 2
3 f1:

The solutions given by Eq. (11) are called nonlinear modes. These nonlinear modes are straight lines in configuration space
(Fig. 2). The dynamical system (12) describes the motions on nonlinear modes. Note, that the method of nonlinear modes
analysis of parametrically excited systems is suggested in the papers [28,29].

The harmonic balance method is used to study the motions on the nonlinear modes (12). As the nonlinear modes for the
main parametric resonance are considered, the motions are presented as

fi ¼ Ai cosðntÞþBi sinðntÞ; i¼ 1;3;5: (13)

Now (13) is substituted into (12) and the amplitudes of harmonics cosðntÞ and sinðntÞ are equated. As a result the following
system of nonlinear algebraic equations is derived:

Ai o2
i �n

2þZiiA
2
i þ

1

2

X
j ¼ 1;3;5

Zijð3A2
j þB2

j Þþ
1

2
wiN1

0
@

1
AþGðAÞi ¼ 0;
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Fig. 2. Nonlinear modes in configuration space.
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Bi o2
i �n

2þZiiB
2
i þ

1

2

X
j ¼ 1;3;5

Zijð3B2
j þA2

j Þ�
1

2
wiN1

0
@

1
AþGðBÞi ¼ 0; i¼ 1;3;5; (14)

where

GðAÞ1 ¼ Z13A3B1B3þZ15A5B1B5þ
1
2 Z17A3B3B5þ

1
4Z17A5ð3A2

3þB2
3Þ;

GðBÞ1 ¼ Z13B3A1A3þZ15B5A1A5þ
1
2 Z17B3A3A5þ

1
4Z17B5ð3B2

3þA2
3Þ;

GðAÞ3 ¼
1
2ð3Z37A1A3A5þZ37A1B3B5þZ37A3B1B5þZ37A5B1B3Þ;

GðBÞ3 ¼
1
2ð3Z37B1B3B5þZ37B1A3A5þZ37B3A1A5þZ37B5A1A3Þ;

GðAÞ5 ¼ Z53A3B3B5þZ51A1B1B5þ
1
2 Z57A3B1B3þ

1
4Z57A1ð3A2

3þB2
3Þ;

GðBÞ5 ¼ Z53B3A3A5þZ51B1A1A5þ
1
2 Z57B3A1A3þ

1
4Z57B1ð3B2

3þA2
3Þ: (15)

The following cases of solutions exist in system (14):

Case 1:1 : A1a0; A3 ¼ A5 ¼ 0; Bi ¼ 0;

1:2: B1a0; B3 ¼ B5 ¼ 0; Ai ¼ 0;

2:1: A3a0; A1 ¼ A5 ¼ 0; Bi ¼ 0;

2:2: B3a0; B1 ¼ B5 ¼ 0; Ai ¼ 0;

3:1: A5a0; A1 ¼ A3 ¼ 0; Bi ¼ 0;

3:2: B5a0; B1 ¼ B3 ¼ 0; Ai ¼ 0;

4:1: A1a0; A5a0; A3 ¼ 0; Bi ¼ 0;

4:2: B1a0; B5a0; B3 ¼ 0; Ai ¼ 0;

5:1: A1a0; A3a0; A5a0; Bi ¼ 0;

5:2: B1a0; B3a0; B5a0; Ai ¼ 0; (16)

where i¼ 1;3;5.
Now every group of solutions is considered separately. At first, Cases 1.1 and 1.2 are considered. Fixing the value n with

a certain step size, the solutions are determined from the system of nonlinear algebraic equations (14). The vibrations
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amplitudes A1 and B1 are obtained analytically in the following form:

A2
1 ¼ ½2n

2�2o2
1�w1N1�=3Z11;

B2
1 ¼ ½2n

2�2o2
1þw1N1�3Z11: (17)

Cases 2.1, 2.2, 3.1 and 3.2 can be determined analytically too. The amplitudes A3, B3, A5, B5 are determined as

A2
i ¼Oi=3Zii; B2

i ¼Oi=3Zii i¼ 3;5; (18)

where Oi ¼ 2n2�2o2
i þwiN1.

Altering the frequency n with the certain step, Cases 4.1 and 4.2 are analyzed. The system of nonlinear algebraic
equations (14) is solved for every value of n. This system has the following analytical solution:

A2
1 ¼ y�1

½Z55O1�Z15O5�=3; B2
1 ¼ y�1

½Z55O1�Z15O5�=3;

A2
5 ¼ y�1

½Z11O5�Z51O1�=3; B2
5 ¼ y�1

½Z11O5�Z51O1�=3; (19)

where y¼ Z11Z55�Z15Z51.
Let us consider Cases 5.1 and 5.2. Altering the frequency n with certain step, the vibrations amplitudes are determined

from the system of nonlinear algebraic equations (14), which is solved numerically by the Newton method with respect to
A1, B1, A3, B3, A5, B5.

Now the nonlinear vibrations of cylindrical shells are considered accounting for energy dissipation. Then the linear
damping is added into system (6). The resulted system has the following form:

€f iþxi
_f iþo2

i fiþ fiRiðf1; . . . ; f7ÞþGiðf1; . . . ; f6ÞþwiNxfi ¼ 0; i¼ 1;2; . . . ;6: (20)

The functions Ri of system (20) are determined by Eqs. (10).
Note, that the equations f2i�1 ¼ 7 f2i; i¼ 1;2;3 are exact solutions of the system expressed by Eq. (20). These solutions

correspond to nonlinear modes. Moreover, these nonlinear modes coincide with the nonlinear modes of the system
without dissipation (12). The harmonic balance method is used to study these nonlinear modes and the system motions
are presented in the form of Eq. (13). Then the system of nonlinear algebraic equations with respect to amplitudes of
harmonics (13) is derived as

Ai o2
i �n

2þZiiA
2
i þ

1

2

X
j ¼ 1;3;5

Zijð3A2
j þB2

j Þþ
1

2
wiN1

0
@

1
AþBixinþGðAÞi ¼ 0;

Bi o2
i �n

2þZiiB
2
i þ

1

2

X
j ¼ 1;3;5

Zijð3B2
j þA2

j Þ�
1

2
wiN1

0
@

1
A�AixinþGðBÞi ¼ 0; i¼ 1;3;5: (21)

The functions GðAÞi , GðBÞi are determined from Eqs. (15). The following groups of solutions exist in system (21):

6:1: A1a0; B1a0; A3 ¼ A5 ¼ 0; B3 ¼ B5 ¼ 0;

6:2: A3a0; B3a0; A1 ¼ A5 ¼ 0; B1 ¼ B5 ¼ 0;

6:3: A5a0; B5a0; A1 ¼ A3 ¼ 0; B1 ¼ B3 ¼ 0;

6:4: A1a0; A5a0; B1a0; B5a0; A3 ¼ 0; B3 ¼ 0;

6:5: A1a0; A3a0; A5a0; B1a0; B3a0; B5a0: (22)

The solutions given by Eq. (22) of the system described in Eq. (21) are analyzed numerically. Setting the parameter n
with a certain step, system (21) is solved by the Newton method.

The traveling waves for the main parametric resonance, which are described by system (20), are considered taking into
account dissipation. The harmonic balance method is used to study these motions and the system vibrations are presented
as

fi ¼ Ai cosðntÞþBi sinðntÞ;

fiþ1 ¼ Ai sinðntÞþBi cosðntÞ; i¼ 1;3;5: (23)

Then the amplitudes of harmonics in Eq. (23) are determined from the following system of nonlinear algebraic equations:

Ai o2
i �n

2þZiiB
2
i þ

X
j ¼ 1;3;5

ZijðA
2
j þB2

j Þ7
1

2
wiN1

0
@

1
A7Bixinþ ~G

ðAÞ

i ¼ 0;
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Bi o2
i �n

2þZiiA
2
i þ

X
j ¼ 1;3;5

ZijðA
2
j þB2

j Þ7
1

2
wiN1

0
@

1
A7Aixinþ ~G

ðBÞ

i ¼ 0; i¼ 1;3;5; (24)

where

~G
ðAÞ

1 ¼ Z13A3B1B3þZ15A5B1B5þZ17A3B3B5þ
1
2Z17A2

3A5;

~G
ðBÞ

1 ¼ Z13B3A1A3þZ15B5A1A5þZ17B3A3A5þ
1
2Z17B2

3B5;

~G
ðAÞ

3 ¼ Z37A1A3A5þZ37A1B3B5þZ37A5B1B3þZ31A1B1B3þZ35A5B3B5;

~G
ðBÞ

3 ¼ Z37B1B3B5þZ37B1A3A5þZ37B5A1A3þZ31B1A1A3þZ35B5A3A5;

~G
ðAÞ

5 ¼ Z51A1B1B5þZ53A3B3B5þZ57A3B1B3þ
1
2Z57A1A2

3;

~G
ðBÞ

5 ¼ Z51B1A1A5þZ53B3A3A5þZ57B3A1A3þ
1
2Z57B1B2

3: (25)

The following groups of solutions exist in system (24):

ð1Þ A1 ¼ B1a0; A3 ¼ A5 ¼ B3 ¼ B5 ¼ 0;

ð2Þ A1 ¼ B1a0; A5 ¼ B5a0; A3 ¼ B3 ¼ 0;

ð3Þ A1 ¼ B1a0; A5 ¼ B5a0; A3 ¼ B3a0: (26)

Altering the frequency of the parametric load n, system (24) is solved by the Newton method.
In order to analyze stability of periodic vibrations, the system of variational equations is derived and fundamental

matrix is calculated numerically. Then the multipliers are obtained from the fundamental matrix [30].
Now the parameters of the vibrations are connected to the dynamic flexure w. Nonlinear modes f2i�1 ¼ 7 f2i, i¼ 1;2;3

correspond to the following standing waves of the cylindrical shell:

wðx; y; tÞ ¼
ffiffiffi
2
p

sin
mpx

L

X3

i ¼ 1

ðA2i�1 cosðntÞþB2i�1 sinðntÞÞcos
niy

R
8

p
4

� �
þC sin2 mpx

L
þE; (27)

C ¼ Z�1
X

j ¼ 1;3;5

½ ~o8ðg8jþg8jþ1Þf
2
j �o8ðg7jþg7jþ1Þf

2
j �;

E¼ Z�1
X

j ¼ 1;3;5

½o7ðg7jþg7jþ1Þf
2
j � ~o7ðg8jþg8jþ1Þf

2
j �:

For the traveling waves (23) the shell dynamic flexure has the following form:

wðx; y; tÞ ¼ sin
mpx

L

X3

i ¼ 1

A2i�1 cos nt�
niy

R

� �
þB2i�1 sin ntþ

niy

R

� �h i
þ ~C sin2 mpx

L
þ ~E; (28)

~C ¼ Z�1
X

j ¼ 1;3;5

f ~o8½g8jf
2
j þg8jþ1f 2

jþ1��o8½g7jf
2
j þg7jþ1f 2

jþ1�g;

~E ¼ Z�1
X

j ¼ 1;3;5

fo7½g7jf
2
j þg7jþ1f 2

jþ1�� ~o7½g8jf
2
j þg8jþ1f 2

jþ1�g:

The summand A2i�1 cosðnt�ðniy=RÞÞ of Eq. (28) describes the rotation of the shell deformation pattern about symmetry axis
with angular velocity O� ¼ n=ni in the direction of y increase. The second term B2i�1 sinðntþðniy=RÞÞ of Eq. (28) describes the
wave motions with the same angular velocity on the opposite direction.

4. Numerical analysis of vibrations

The shell with the following parameters, the same as those used in [11] is considered:

h¼ 0:002 m; L¼ 0:4 m; R¼ 0:2 m; E¼ 2:1� 1011 N=m2; m¼ 0:3; r¼ 7850 kg=m3;

o0 ¼ 3165:03 rad=s; N1 ¼ 0:6Ncr; (29)
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where Ncr ¼ Eh2=R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1�n2Þ

p
is classical critical load per unit length [15], which has the following value for the parameters

(29): Ncr ¼ 2:54� 106 N=m. The frequencies of shell linear vibrations are the following (rad/s):

o3;1 ¼ 5636:32; o4;1 ¼ 3745:32; o5;1 ¼ 3165:03; o6;1 ¼ 3437:18; o7;1 ¼ 4214:28; o8;1 ¼ 5289:51;

where the first subscript indicates the wavenumbers in circumference direction and the second subscript shows the
number of half-waves in x directions (Fig. 1). In future nonlinear analysis the modes with the following parameters are
taken: n1 ¼ 4; n2 ¼ 5; n3 ¼ 6; m¼ 1.

The numerical analysis of the nonlinear modes is carried out for the shell parameters (29). The dependence of the
vibrations amplitudes A1, B1 on the frequency n are presented on the frequency response (Fig. 3). The stable solutions are
denoted by solid lines and the unstable solutions are shown by dashed lines. The branches of the frequency response
(Fig. 3) are denoted by Að1Þ1 and Bð1Þ1 for Cases 1.1 and 1.2 of Eq. (16). In this case only one pair of the conjugate modes from

Eq. (3) is active. The branches Að2Þ1 , Bð2Þ1 (Fig. 3) describe the motions with two pairs of conjugate vibrations modes. These

solutions correspond to Cases (4.1) and (4.2) of Eq. (16). The branches Að3Þ1 , Bð3Þ1 of the frequency response show the
vibrations with three pairs of conjugate modes, which correspond to Cases (5.1) and (5.2) of Eq. (16).

The direct numerical integrations of the system in Eq. (12) at different values of frequency n are carried out to confirm
the analytical results. Using such an approach, only stable solutions are derived. The data of the calculations are shown by
small squares in Fig. 3. The results of the direct numerical integration are very close to the data, which are obtained by the
harmonic balance method.

Carrying out numerical integration on long time interval, the periodic solution is considered unstable, if the numerical
trajectory escapes from the considered it to another trajectory. This behavior is explained by an error of numerical
integration.
Fig. 3. Frequency response of parametric vibrations on nonlinear mode.

Fig. 4. Comparison of the results of the direct numerical integration with analytical solution.



ARTICLE IN PRESS

R. Kochurov, K.V. Avramov / Journal of Sound and Vibration 329 (2010) 2193–2204 2201
To study stability of the parametric vibrations the direct numerical integration of the differential equations (6) is carried
out on the time interval t 2 ½0;2000pn�1�. The initial conditions are determined from Eqs. (13, 24).

Fig. 4 shows the comparison of the data of the direct numerical integration of system (6) with the analytical solution of
Eq. (13), which has the following parameters: n¼ 1:25, A1 ¼ 0:8069, A3 ¼ 0:6872, A5 ¼ 0:6022, Bi ¼ 0, i¼ 1;3;5. The results
of the analytical solution are shown by solid lines and the data of the direct numerical integration are represented by small
squares.

Now loss of normal modes of stability of the dynamical system (6) is analyzed by the direct numerical integration of the
system given in Eq. (6). The results of the calculations are presented in Fig. 5. Wave form (Fig. 5a) corresponds to Case (1.1)
of (16) with the following parameters: n¼ 1:18, A1 ¼ 0:3694. The unstable solution (4.1) of Eqs. (16) is presented in Fig. 5b,
where the system time history is shown. This solution is calculated from the periodic solution with the following
parameters: n¼ 1:43, A1 ¼ 2:8494, A5 ¼ 2:6091.

The dynamics of the system with dissipation (20) on the nonlinear modes is presented on the frequency response
(Fig. 6). The dependence of the vibrations amplitudes A1, B1 on the frequency n is shown in this figure. The symbols Að1Þ1 , Bð1Þ1

denote the frequency response branches, which correspond to Case (6.1) of the solutions in Eq. (22). Then, only one pair of
conjugate modes of the expansion (3) is active. The branches Að2Þ1 , Bð2Þ1 describe the excitation of two pairs of conjugate
modes, which correspond to type (4) of Eq. (22). The branches Að3Þ1 , Bð3Þ1 describe the vibrations, when three pair of conjugate
modes are excited. This corresponds to Case (5) of Eq. (22).
Fig. 5. The behavior of the system without dissipation, when stability of nonlinear mode is lost. (a). The nonlinear mode corresponds to the solutions (1.1)

from formulas (15) with the following parameters: n¼ 1:18, A1 ¼ 0:3694. (b) Group (4.1) of Eqs. (15) with the following parameters: n¼ 1:43, A1 ¼ 2:8494,

A5 ¼ 2:6091.

Fig. 6. Frequency response of nonlinear mode of parametric vibrations of the system with dissipation.



ARTICLE IN PRESS

R. Kochurov, K.V. Avramov / Journal of Sound and Vibration 329 (2010) 2193–22042202
If the nonlinear modes of the system with dissipation (20) lose stability, the attraction of the trajectories to the stable
solutions takes place. The motions, when the nonlinear mode losses stability, are shown in Fig. 7. These dynamics is
obtained by the direct numerical integration from the initial conditions, which are determined from the solutions of the
harmonic balance method with the following parameters:
(a)
Fig.
start

A5 ¼
n¼ 1:182, A1 ¼ 0:1941, B1 ¼ 0:0959;

(b)
 n¼ 1:45, A1 ¼ 2:7440, B1 ¼ 1:0756, A5 ¼ 2:5257, B5 ¼ 0:9921.
Fig. 7a shows the trajectory attracted to the periodic motions and Fig. 7b shows the trajectory attracted to the stable trivial
solutions.

The numerical analysis of the traveling waves is carried out. Fig. 8 shows the frequency response of the traveling waves.
The dependence of the vibrations amplitudes A1 on the frequency n is shown in this figure. The branches of the frequency
response describing Case (6.1) of the solutions in Eq. (24) are denoted by Að1Þ1 . Then only one pair of conjugate vibrations
modes of expansion (3) is active. The branches Að2Þ1 (Fig. 8) describe the vibrations with two pairs of conjugate modes. These
motions are characterized by Case (2) of Eq. (26). The branches Að3Þ1 show the shell vibrations with three pairs of conjugate
modes, which correspond to Case (6.3) of Eqs. (26).
7. The behavior of the system with dissipation, when the nonlinear mode is lost stability. The results of the direct numerical integration, which is

ed from the harmonic balance solution with the following parameters: (a) n¼ 1:182, A1 ¼ 0:1941, B1 ¼ 0:0959; (b) n¼ 1:45, A1 ¼ 2:7440, B1 ¼ 1:0756,

2:5257, B5 ¼ 0:9921.

Fig. 8. Frequency response of the traveling waves of the system with dissipation.
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To check the results of the analysis of the traveling waves, the comparison of the motions, which are obtained by the
direct numerical integration of system (20), with the results of the harmonic balance method is carried out. The steady
vibrations, which are obtained by the direct numerical integration, are shown by small squares in Fig. 9. The analytical
solution (23) with the parameters n¼ 1:3, A1 ¼ B1 ¼ 0:5616, A3 ¼ B3 ¼ 0:6051, A5 ¼ B5 ¼ 0:5206 is presented by solid lines in
the same figure.

5. Conclusions

One and two conjugate modes approximations of shell vibrations are not enough to predict dynamics of a wide class of
cylindrical shells. This is explained by closeness of the eigenfrequencies of the different conjugate modes. In this case, only
a multimode model of shells can describe the parametric vibrations adequately.

The following types of vibrations are analyzed in this paper:
�
 one pair of conjugate modes is active;

�
 two or three pairs of conjugate modes are active.
The vibrations, which are characterized by one or two pairs of conjugate modes, can be described by a dynamical model
with two and four degree-of-freedom, respectively.

Nonlinear modes, which are straight lines in a configuration space, are observed for multimode shells dynamics. We
stress, that the same nonlinear modes exist both in the system without damping and in the system with damping. The
existence of such normal modes is explained by axisymmetry of cylindrical shells.

Nonlinear modes and traveling waves are two possible forms of solutions of the dynamical system expressed by Eq. (6).
The traveling waves are described by Eq. (23). As follows from the results of the analysis, the normal modes and traveling
waves exist in the frequency bands n 2 ½1;1:6� and n 2 ½1:1;1:8�, respectively. Thus, the frequency band n with two kinds of
motions exists. Any one of these motions has a basin of attraction. Therefore, if the initial conditions belong to the basin of
attraction of nonlinear mode or traveling waves, then nonlinear mode or traveling waves take place.

All frequency responses of nonlinear modes and traveling waves are qualitative similar. This is explained by similarity
of the systems of nonlinear algebraic equations with respect to amplitudes.

The periodic motions of cylindrical shells with geometrical imperfections are not presented as nonlinear modes
considered in this paper. The vibrations of this system can be described by more complex nonlinear modes and others
periodic motions. The analysis of nonlinear modes of the shell with imperfections may be a very interesting problem for
future research.
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